TS 2004 NDT Workshop

Ground Penetrating Radar for Pavement Investigations

Tom Scullion

Texas Transportation Institute

t-scullion@tamu.edu

Overview of GPR Workshop

- 1 What is GPR?
- 2 History of GPR within TxDOT
- 3 Field Data Collection + Analysis
- 4 Successful Applications in Texas
- 5 Key Steps in Implementation

TxDOT's Ground Penetrating Radar Unit

- TTI's data acquisition and processing systems (COLORMAP)
- Integrated Video
- Data collected at highway speed (60 mph)
- Effective depth of penetration 24 ins
- TxDOT has 5 available units (Austin, Fort Worth, TTI, Odessa and Bryan)
- TxDOT Contact: Carl Bertrand

Florida's GPR unit

Contact: <u>Tom.Byron@</u>
 <u>dot.state.fl.us</u>

- Applications
 - Checking layer thickness for PMS (within 0.5"
 HMA, base variable)
 - Toll road surveys
 - Move to project level

Pulse Radar Antenna

Finland's GPR systems

- Similar units in Missouri, Kentucky and Indiana
- Contacts

Timo.Saarenketo
@roadscanners.com

John Wenzlick, MoDOT

TxDOT's GPR Development Effort

- 87 88 GPR first demonstrated to TxDOT
- 89 90 Evaluation + Specifications Development
- 90 99 Software Development- Research system purchased - numerous research studies
- 95 96 TxDOT purchases first system
- 96 03 Training schools
- 01 − 02 Buy additional units
- 01 04 Quality Control Studies
- 02 04 Integrating GPR and FWD

TxDOT's Specification Tests

Annual Recalibrations (completed May 2003)

Standard tests include

- Noise/Signal < 5%
- •Signal stability < 1%
- •Long term Stab < 3%
- Concrete Penetration
- System Calibration factors determined

6 Units tested (May 2003)

Repeatability studies at TTI Annex

FIELD DATA COLLECTION

Fiberglass Boom

Cable connections

Final Assembly 15 minute warm up

Step 1 Data Acquisition System Check

Data Acquisition

TTI's RADAR 2K program

Operators view during data collection

same header information

Metal Plate Test at end of run

Data Collection Recommendations

- 2 person operation (driver/operator)
- High Speed: 200 miles/day; Integrated Video/GPR essential
- Data Resolution 1024 points per trace
- Mostly Outside lane/ Outside wheel path
 - Depends on application
 - Multiple passes, transverse, slalom
- Distance driven data collection
 - Interval depends on application
- Operator Notes
 - Power lines, reference markers in data
 - Written notes on each marker and start/stop of major distresses
- Weather Restriction
 - Standing water
 - Equipment damaged by rain
- Verification cores critical on older sections

TTI's Rut/Ride Calibration section

Interpretation of GPR Signals

- Training schools available to introduce technology
- Data Reviewed and initial processing done in field
- Final Analysis for design project applications done by TxDOT Engineers
 - 5 experts within TxDOT

Engineering Significance of GPR Reflections

- 1. Surface Reflection A_0 (HMA Air Voids $\uparrow A_0 \downarrow$)
- 2. Base Reflection A_1 (Base Moisture A_2)
- 3. Time Delay Δt_1 (Surface Thickness Δt_1)
- 4. Uniformity (Reflections at Interfaces Only)

Principles of Ground Penetrating Radar

Successful GPR Applications for Flexible Pavements

- Thickness of Pavement Layers
- Defects in Base (Wet areas)
- Defects in Hot Mix layers (stripping, trapped moisture)
- Identifying areas of segregation and poor joint density in new overlays
- Deterioration in asphalt covered bridge decks
- Pavement Rehabilitation studies (identifying changes in structure)
- Pavement Forensic Studies (cause of distress)

Limited success on concrete pavements

Does not work everywhere - oversold in some cases

Thickness of Pavement Layers

Engineering Significance of GPR Reflections

- 1. Surface Reflection A_0 (HMA Air Voids $\uparrow A_0 \downarrow$)
- 2. Base Reflection A_1 (Base Moisture A_2)
- 3. Time Delay Δt_1 (Surface Thickness Δt_1)
- 4. Uniformity (Reflections at Interfaces Only)

GPR Thickness Accuracy vs Cores (Maser 1996)*

- New Asphalt
- Existing Asphalt
- Concrete
- Granular Base

- (3 5%)
- (5-10%)
- (5 10%)**
- $(8 15\%)^{***}$

- * 1 GHz air coupled limited to 24 ins
- ** does not work for new concrete and requires adequate contrast between layers
- *** requires contrast between base and subgrade
- Validation core(s) very important on old sections

Integration of COLORMAP and MODULUS 6

Moisture trapped within layers

In

Asphalt layers
Cement Treated bases
Rubblized Concrete
Under Concrete slabs

Engineering Significance of GPR Reflections

- 1. Surface Reflection A_0 (HMA Air Voids $\uparrow A_0 \downarrow$)
- 2. Base Reflection A_1 (Base Moisture A_2)
- 3. Time Delay Δt_1 (Surface Thickness Δt_1)
- 4. Uniformity (Reflections at Interfaces Only)

Detecting Base Moisture problems with GPR

3 Year old CTB Sandstone (Houston)

Base dielectric plot locating wet areas

NDT Evaluation of Rubblized Concrete on IH 10 (1/30/03)

- Ground Penetrating Radar
 - Any moisture trapped in base
 - Any defects in HMA (trapped water, segregation, density problems in low layers, quality of joints)
- Falling Weight Deflectometer
 - Is the rubblized layer a granular base?
 - Moduli values for design for rubblized concrete and Superpave mix

IH 10 Ideal GPR trace 98% of project

Ideal COLORMAP display EB

Defect areas (on-off ramps)

Wet layer 2 ins down

Normal Location

Defect Location

Candidate for Rubblization ?? IH 45 NB Localized water filled voids beneath slab

Forensic and Pavement Rehabilitation Studies

- Uniformity of section
- Thicknesses for FWD analysis
- Cause of Surface Distress

Use of GPR in Pavement Rehabilitation projects Identifying section breaks with GPR

SELECTING REHAB FORENSIC INVESTIGATION OPTIONS FORENSIC INVESTIGATION FORENSIC INVESTIGATIO

Adequate

- Distress
- Performance

Problem

Resurfacing

Find Out
What's Wrong
and Fix It

1) cause (proof) 2)what to do now? 3) How to avoid in future?

Pavement Evaluation Tools

Recommended Approach

- Step 1 Assemble Background Info
 - X-section, Age, Visual Condition, Best Guess
- Step 2 GPR Survey
- Step 3 FWD Survey
- Step 4 Propose cause of problem
- Step 5 Field Verification
 - DCP, Coring, Lab Testing
- Step 6 Generation Rehab options
 - Hold it together for 5 10 years
 - Fix the problem (structural design FPS 19
- Step 7 Engineering Report

Alligator 1 US 287

Causes of Failure

Lack of bond between HMA layers

Burnt binder in top layer

Not a base problem

FORENSIC INVESTIGATION U.S. 287 RESULTS FROM SHALLOW TRENCHING

Key Steps In Implementation

- In house (TxDOT)
- With expert consultants

Complete System for DOT implementation

- Good Equipment (TxDOT Specifications)
- Good Data Acquisition Software
 - 1024 bit resolution
 - Distance based data collection
 - Integrated Video
- Good Data Processing System
 - Thickness and dielectric computation
 - Handle thin surfacings
 - Handle vehicle bounce
- Research (what works / what does not)
- Training
- Maintenance support

Keys to TxDOT's implementation

- Long term development and implementation support
- Have reasonable expectations
- Get the technology onto high dollar projects (pavement rehab) and the information into the hands of decision makers
- Train key pavement designers in Districts
- Training Schools + CD's
 - 1.5 days school on GPR
 - 3 4 day school on Pavement Rehabilitation (project specific)

PROCESSING & INTERPRETING

Overview

Pavement Section — Design Division

Austin

TXDOT Engineering Specialist

Science of GPR

Importing Field Data

Display & Preferences Using COLORMAP™

Menu Reference

Processing the Data

bout the HELP System

Using HELP

and other diagnostic tests

HELP Case Studies

State Hwy 10

State Hwy 7 Exercises

Farm-to-Market 2818 Interstate 635

Feedback

- Pause -

문

Step Back

Step Forward

• Carl Bertrand intro.exe

Dealing with Consultants

- Oversell technology
 - Does not work everywhere
- Training for DOT personnel
 - Must know limitations of technology
- AASHTO involvement pp-40 and TIG
- Pilot testing Absolute need for validation

New Applications and Developments Multi-Functional Vehicle (Texas Flavor)

QC testing of new overlays

Segregation Detection

Longitudinal Joint Density

Changes > 0.4 out of spec on air voids for Dense Texas mixes

> 0.8 for Open graded mixes

